[微積] 台大95碩士班考試高微

看板Math作者 (Tasuku)時間14年前 (2011/12/30 19:49), 編輯推噓2(205)
留言7則, 4人參與, 最新討論串1/1
4. Let u and v be two real-valued C^1 functions on R^2 such that the gradient ▽u is never zero, and such that, at each point, ▽u and ▽v are linearly dependent vectors. Given p = (x_0,y_0) belonging to R^2. Must there exist a C^1 function F of one variable such that v(x,y) = F(u(x,y))? 5. Given h : R → R a nonzero smooth function with compact support i.e. the closure of {x : h(x)≠0} is compact. For ε > 0, let ∞ -K(x,y)/ε ∫ (x - y) e dy -∞ u_ε(x) = ————————————— , for any x belonging to R, ∞ -K(x,y)/ε ∫ e dy -∞ where K(x,y) = ((x-y)^2)/4 + h(y)/2 for x,y belonging to R. (1) Can each u_ε be a smooth function with compact support? (2) Can the limit lim u_ε(x) always exist? in what sense? ε→0+ 這兩題要怎麼著手? 有任何想法可以提供嗎? 感謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 134.208.26.13

12/30 21:27, , 1F
第一題給p幹嘛??哪裡用到了??
12/30 21:27, 1F

12/30 22:15, , 2F
問題應該是F的存在與p有關係
12/30 22:15, 2F

12/30 22:15, , 3F
題目大概沒PO完整
12/30 22:15, 3F

12/31 09:23, , 4F
題目照著試卷打的,給p點我也不懂是幹嘛
12/31 09:23, 4F

12/31 10:51, , 5F
1.給定p點,應用反函數(x,y)<->(u,v) 就知道答案了
12/31 10:51, 5F

12/31 12:27, , 6F
但是▽u和▽v線性相依
12/31 12:27, 6F

12/31 14:01, , 7F
喔喔 看錯 XDD
12/31 14:01, 7F
文章代碼(AID): #1E_QLJbP (Math)