[線代] 2題線代證明

看板Math作者 (不怕是一種幸福)時間14年前 (2011/12/21 00:05), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/2 (看更多)
1.A permutation matrix p is a 0,1-matrix having exactly one 1 in each row and column.Prove that a square matrix of nonnegative integers can be expressed as the sum of k permutation matrices if and only if all row sums and column sums equal k. 2.A doubly stochastic matrix Q is a nonnegative real matrix in which every row and every column sums to 1.Prove that a doubly stochastic matrix Q can be expressed Q=C1P1+C2P2+....,where C1,C2... are nonnegative real numbers summing to 1 and P1,P2.... are permutation matrices. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.37.106.215
文章代碼(AID): #1EyB9ZzZ (Math)
討論串 (同標題文章)
文章代碼(AID): #1EyB9ZzZ (Math)