Re: [線代] linearly dependent

看板Math作者 (Bineapple)時間14年前 (2011/12/08 03:18), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《gmnxix (果凍)》之銘言: : 覺得好像不會很難,但突然證不出來@@ : Let the set {v1,v2} be linearly dependent in a vector space V : Prove that {v1+v2,v1-v2}is also linearly dependent : 初步想法: : V2=CV1 或 C1V1+C2V2=0 C1.C2 not both0 : =>卡住ing.......QQ There exist a and b such that av1+bv2=0 where at least one of a and b is not zero. Let A=a+b, B=a-b, then at least one of A and B is not zero, and A(v1+v2)+B(v1-v2)=(a+b)(v1+v2)+(a-b)(v1-v2) =2(av1+bv2)=2*0=0. So v1+v2 and v1-v2 are linearly dependent. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.192.216.62
文章代碼(AID): #1Etxl-Mh (Math)
討論串 (同標題文章)
文章代碼(AID): #1Etxl-Mh (Math)