[微積] Euler equation

看板Math作者 (沒有腳毛生不如死)時間14年前 (2011/11/20 19:21), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/2 (看更多)
x^2 y"+阿法xy'+杯塔y=0 Consider x > 0 and let x = e^t A(d^2y/dt^2)+B(dy/dt)+C=0 Let r1 and r2 be the roots of Ar^2 + Br + C = 0 show thar if r1 and r2 are real and equal, then y = (c1 + c2t)e^r1t = (c1 + c2 ln x)x^r1 y'=(c1r1+c2+c2r1t)e^r1t y"=(c1r1^2+c2r1+c2r1+tc2r1^2)e^r1t c1(Ar1^2+Br1+C)e^r1t+c2(tAr1^2+tBr1+tC+2Ar1t+B)e^r1t =c1(Ar1^2+Br1+C)e^r1t+c2[t(Ar1^2+Br1+C)+2Ar1t+B]e^r1t 右邊多出2Ar1t+B 沒辦法證明是0 怎麼辦 -- 因為要改的壞習慣太多了 所以就改天吧 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.60.254.12
文章代碼(AID): #1EoEAcOw (Math)
文章代碼(AID): #1EoEAcOw (Math)