[圖論] complete graph

看板Math作者 (無法顯示)時間14年前 (2011/10/17 20:53), 編輯推噓2(203)
留言5則, 3人參與, 最新討論串1/2 (看更多)
1. For n>=2, let G=(V,E) be the loop-free undirected graph, where V is the set of binary n-tuples (of 0's and 1's) and E={(v,w)|v,w in V and v,w differ in two positions}. Find κ(G) ? 我看到黃字 我想應該是2 請問這張圖在說甚麼呢? http://ppt.cc/xaKL ============================== 2. m,n為正整數, m<n, How many paths of length m are there in the complete graph K_n 答案: P(n, m+1) / 2 請問為什麼呢? =============================== 3. For n>=3, how many subgraphs does K_n have? n C(i,2) 答案: Σ C(n,i)*2 i=1 請問為什麼呢? =================================== 4. G is regular with 15 edges, determine |V| 答案: |V|*deg(v) = 2*15 = 30 |V| = 1,2,3,5,6,10,15,30 (if loops are allowed in G) 請問為什麼呢? =================================== 請高手相助 謝謝!! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.166.118.226

10/17 22:56, , 1F
第4題就只是30的因數而已
10/17 22:56, 1F

10/17 22:59, , 2F
請問為什麼是30的因數?
10/17 22:59, 2F

10/18 01:33, , 3F
15 edges 每個edges提供了2個degree 共30個degree
10/18 01:33, 3F

10/18 01:33, , 4F
G is regular 所以 頂點個數一定是30的因數
10/18 01:33, 4F

10/18 10:36, , 5F
....把 loop 算成半個 edge 也是很好笑
10/18 10:36, 5F
文章代碼(AID): #1Ed2Kx1n (Math)
討論串 (同標題文章)
文章代碼(AID): #1Ed2Kx1n (Math)