Re: [機統] Durrett 的獨立變數習題

看板Math作者 (喵喵)時間14年前 (2011/09/19 22:19), 編輯推噓2(202)
留言4則, 3人參與, 最新討論串3/3 (看更多)
※ 引述《ndc24075 (歡喜作,甘願受)》之銘言: : 因為想了很久實在不知道從何下手,想請各位幫忙解答 : 4.12 : Let K≧3 be a prime and let X and Y independent r.v that are uniformly distri- : buted on {0,1...,K-1}. For 0≦n≦K, let Zn= X+nY mod K. Show that Zo, Z1,..., : Z(K-1) are pairwise independent, i.e., each pair is independent, but if we : know the values of two of the variables then we know the values of all the : others. 要證: P(Zi交集Zj) = P(Zi)P(Zj) when K>i>j>=0 P(Zi=a, Zj=b) = P(X + i Y=a, X + j Y=b) = P[X=(ib-ja)(i-j)^-1 , Y=(a-b)(i-j)^-1] (P中"="定義在mod K, 因K>i-j>0, K質數, (i-j)^-1 唯一) = P[X=(ib-ja)(i-j)^-1] P[Y=(a-b)(i-j)^-1] = K^-2 類似地 K-1 P(Zi=c) = P(X + i Y=c) = Σ P(X + iY = c| Y=y) P(Y=y) y=0 K-1 = Σ P(X= c-iy) P(Y=y) (P中"="定義在mod K) y=0 = K^-1 至於 剩下的推論就只是 已知Zi=a, Zj=b 解X,Y已在上面算過 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.40.221.9

09/19 22:21, , 1F
Zn=(ib-ja)(i-j)^-1 + n (a-b)(i-j)^-1 mod K
09/19 22:21, 1F

09/20 22:07, , 2F
釣出神人!看這篇就好了 不要理我的。
09/20 22:07, 2F

09/21 00:14, , 3F
非常感謝兩位的幫忙,真的都很詳盡...尤其是樓上的圖
09/21 00:14, 3F

09/21 00:14, , 4F
總之非常感謝!
09/21 00:14, 4F
文章代碼(AID): #1ETqzrAc (Math)
文章代碼(AID): #1ETqzrAc (Math)