Re: [中學] 請教兩題北模考題

看板Math作者 (realdidir)時間14年前 (2011/09/08 14:49), 編輯推噓1(102)
留言3則, 1人參與, 最新討論串4/5 (看更多)
2. A.B.O為複數平面上的三個點 對應的值為a.b.0 且滿足│a-3│=1 ,b=(-1+i)a 求A.B.O所圍成的三角形面積之最大與最小值? 想了很久 還是無法... 感謝各位了^^; a點為圓心(3,0),半徑為1的圓上動點<===從此處接個圓的參數轉換 假設a點為(3+cost,sint) 也就是可以將a寫成複數平面上的(3+cost)+(sint)*i b=(-1+i)a<==可以看出a與b夾角135度 且可整理出b為(-3-cost-sint)+(3+cost-sint)*i 再來計算 (|a|*|b|*sin135)/2 可以得到 此三角形面積為 5+3cost 也就是面積最大是8,最小是2 有什麼地方沒有考慮到的煩請大大們指教了 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.167.125.70

09/09 01:11, , 1F
這樣沒錯喔 但簡單點想就 圓心(3,0)半徑為1
09/09 01:11, 1F

09/09 01:11, , 2F
找距離圓心最近跟最遠的兩點 為一邊長
09/09 01:11, 2F

09/09 01:12, , 3F
另一邊長即為根號2倍 角度為135度就可以囉
09/09 01:12, 3F
文章代碼(AID): #1EQ6MIJP (Math)
文章代碼(AID): #1EQ6MIJP (Math)