[微積] 數列極限問題2則
1. Suppose that an →L. Show that if an 小於等於 M for all n,
then L 小於等於 M .
2. Let f be a function continuous everywhere and let r be a real number.
Define a sequence as follows:
a1=r , a2=f(r) , a3=f(f(r)) , .........
Prove that if an→L, then L is a fixed point of f:f(L)=L
這二題習題和同學討論許久不得其解
請版上高手解答
感謝!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.240.34
→
08/17 23:26, , 1F
08/17 23:26, 1F
推
08/17 23:39, , 2F
08/17 23:39, 2F
→
08/17 23:40, , 3F
08/17 23:40, 3F
→
08/17 23:40, , 4F
08/17 23:40, 4F
推
08/17 23:46, , 5F
08/17 23:46, 5F
→
08/17 23:51, , 6F
08/17 23:51, 6F
討論串 (同標題文章)