Re: [線代] 矩陣表示法的觀念
※ 引述《mqazz1 (無法顯示)》之銘言:
: let L be the linear operator mapping R^3 into R^3 define by L(x) = Ax
: [ 3 -1 -2 ] [1] [1] [ 0]
: A = [ 2 0 -2 ] v1 = [1] v2 = [2] v3 = [-2]
: [ 2 -1 -1 ] [1] [0] [ 1]
: find the transition matrix V corresponding to a change of basis from
: {v1, v2, v3} to {e1, e2, e3}, and use it to determine the matrix B
: representing L ith respect to {v1, v2, v3}
: ========================================================================
: 我是先令α={v1, v2, v3}, β={e1, e2, e3}
: [3 -1 -2] β [1 1 0] α [-2 1 2]
: [L] = [2 0 -2] V = [I] = [1 2 -2] [I] = [-1 1 1]
: β [2 -1 -1] α [1 0 1] β [-2 2 1]
α [-2 1 2]
[I] = [ 3 -1 -2]
β [ 2 -1 -1]
: α [0 0 0]
: B = [L] = [I] [L] = [3 -1 -2]
: α β β [2 -1 -1]
α β
B = [L] = [I] [L] [I]
α β β α
: [0 0 0]
: 可是書上給的答案是B=[0 1 0]
: [0 0 1]
: 請問我是甚麼地方錯了?
: 謝謝
剩下就交給客倌了
--
~by Jackary P.~
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 180.217.41.210
推
05/28 23:50, , 1F
05/28 23:50, 1F
推
05/28 23:54, , 2F
05/28 23:54, 2F
討論串 (同標題文章)
完整討論串 (本文為第 2 之 2 篇):
線代
0
1