[線代] linearly independent

看板Math作者 (無法顯示)時間14年前 (2011/05/08 16:10), 編輯推噓1(102)
留言3則, 3人參與, 最新討論串3/4 (看更多)
let A be a 3*3 matrix and let x1, x2 and x3 be vector in R^3 show that if the vectors y1 = Ax1 y2 = Ax2 y3 = Ax3 are linearly independent, then the matrix A must be nonsingular and the vector x1, x2 and x3 must be linearly independent 請問這要怎麼證明呢? 我想了兩天左右 還不太清楚怎麼證..謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.228.27.39

05/08 16:21, , 1F
參考 #1DmiMfIG (無誤)
05/08 16:21, 1F

05/08 20:40, , 2F
A singular => rank A < 3
05/08 20:40, 2F

05/08 22:19, , 3F
下面那篇我有去回覆你唷
05/08 22:19, 3F
文章代碼(AID): #1Dna_Q55 (Math)
文章代碼(AID): #1Dna_Q55 (Math)