Re: [工數]高階變係數ODE

看板Math作者 (TMC)時間14年前 (2011/04/30 00:03), 編輯推噓2(200)
留言2則, 2人參與, 最新討論串2/2 (看更多)
※ 引述《ak127911400 (秀蓮)》之銘言: : Find the general soultion y{X} of the following differnetial euations : y"+4xy'+4x^2y =0 : 有請神人感謝 1. -∫[(4x)/2] dx -(x^2) 令y = e *v = e *v -(x^2) -(x^2) y'= -2xe *v + e *v' -(x^2) -(x^2) -(x^2) -(x^2) -(x^2) y''= -2 e *v + 4(x^2)e *v -2xe *v'-2xe *v' + e *v'' 代入ODE -(x^2) -(x^2) ---> e v'' -2e v = 0 ---> v'' -2v = 0 2. 求v_h: -(√2)x (√2)x v_h= ae +be 3. -(x^2) -(x^2) -(√2)x (√2)x y= e *v = e [ae +be ] , where a and b are constants. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 163.22.18.57

04/30 01:27, , 1F
這叫因變數轉換法
04/30 01:27, 1F

04/30 06:25, , 2F
我沒學過這方法耶QQ
04/30 06:25, 2F
文章代碼(AID): #1Dkk5Iqv (Math)
討論串 (同標題文章)
文章代碼(AID): #1Dkk5Iqv (Math)