Re: [代數] 習題煩請給個方向

看板Math作者 (車干)時間14年前 (2011/03/30 03:21), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《hotplushot (熱加熱)》之銘言: : http://tinyurl.com/4vns4gz : 裡面的第一題 : 很難去感覺子群跟Zp⊕Zp同構 : 不太知道怎麼去寫證明 : 煩請版友高手給個方向 Let G be a finite abelian group and G is NOT cyclic. Then G is isomorphic to Zn_1⊕Zn_2⊕...⊕Zn_k, where n_1|n_2|...|n_k. We may let f be the isomorphism from G onto Zn_1⊕...⊕Zn_k If k = 1, then G is cyclic; hence, k ≧2. We can find a prime p such that p|n_1. Consider p|n_1|n_2, then p|n_2. Let s_1 = n_1/p, s_2 = n_2/p. Let H = (s_1)Zn_1⊕(s_2)Zn_2⊕(0)⊕...⊕(0). Then f^-1(H) is a subgroup which is isomorphic to Zp⊕Zp. 僅供參考~ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.251.169.164
文章代碼(AID): #1DaZ5Nz0 (Math)
文章代碼(AID): #1DaZ5Nz0 (Math)