Re: [機統] 硬幣問題
※ 引述《vicwk (Victor)》之銘言:
: ※ 引述《celestialgod (攸藍)》之銘言:
: : A coin, having probability p of landing heads, is continually flipped until
: : at least two head and one tail have been flipped. Find the expected number od
: : flips needed.
: : 推 Aweather :窮舉就可以了 01/26 18:34
: : 窮舉?可以簡述一下過程嗎?
: 假設共需擲 X 次
: P[X=3] = 3p^2(1-p) (3次中2正1反)
: 當n>=4, P[X=n] = C(n-1,1) p^2(1-p)^(n-2) (第2次正面出現在第n次)
再想了一下,此處有誤,忘了考慮第一次反面出現在第n次的情形.
重解一下,假設共需擲 X 次.當 n >= 3,
P[X=n] = P[第一次反面出現在第n次] + P[第二次正面出現在第n次]
= p^(n-1) (1-p) + C(n-1,1) p^2(1-p)^(n-2)
1/(1-p) = 1 (1-p) + 2 p(1-p) + 3 p^2 (1-p) + 4 p^3 (1-p)^2 +
5 p^4(1-p) + ..... (Geometric(1-p)的期望值)
2/p = 2 C(1,1) p^2 + 3 C(2,1) p^2 (1-p) + 4 C(3,1) p^2 (1-p)^2 +
5 C(4,1)p^2(1-p)^3 + ..... (Pascal(2,p)的期望值)
E[X] = 3(p^2(1-p)+C(2,1) p^2 (1-p)) + 4(p^3(1-p)+C(3,1) p^2 (1-p)^2)
+ 5(p^4(1-p)+C(4,1)p^2(1-p)^3) + ...
= (1 (1-p) + 2p(1-p) + 3p^2(1-p) + 4p^3(1-p)^2 +...) - (1(1-p) + 2p(1-p))
+(2C(1,1)p^2 + 3C(2,1)p^2(1-p) + 4C(3,1)p^2(1-p)^2 +...) - 2C(1,1)p^2
= 1/(1-p) - (1-p) - 2p(1-p) + 2/p - 2p^2
= 1/(1-p) + 2/p - 1 - p
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 163.22.18.20
討論串 (同標題文章)