Re: [圖論] Hamiltonian的證明

看板Math作者 (with friends)時間15年前 (2011/01/28 23:04), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《mqazz1 (無法顯示)》之銘言: : Let G be a planar Hamiltonian simple graph with n vertices : Let C be a Hamiltonian cycle in G : Then with respect to C, prove Σ(k-2)(rk-sk) = 0 : Here rk is the number of faces inside C whose boundary contain exactly k edges : sk is the number of faces outside C whose boundary contains exactly k edges : 原始: http://ppt.cc/(6W, : 請問這題要怎麼證呢? : 謝謝 Let f_in and f_out be the number of faces inside and outside C (included C), e_in and e_out be the number of edges inside and outside C (included C), v_in and v_out be the number of vertices inside and outside C. Clearly, v_in = v_out = v \sum (k-2)r_k = (\sum k(r_k)) - 2(\sum r_k) = (2 e_in - v) - 2 (f_in - 1) = 2 (e_in - f_in - v) + v + 2 = v-2 Similarly, \sum (k-2)s_k = v-2. QED -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.36.54.5 ※ 編輯: sophialiege 來自: 114.36.54.5 (01/28 23:06)
文章代碼(AID): #1DGjhsuH (Math)
討論串 (同標題文章)
文章代碼(AID): #1DGjhsuH (Math)