[分析] uniform convergence(Apostol)
Let {a_n} be a decreasing sequence of positive terms. Prove that the
series Σa_nsin(n)x converges uniformly on R if, and only if, na_n→0
as n→∞.
有人能提示一下嗎?
Dirichlet和Abel兩種測試好像都派不太上用場...
--
Stirling's formula:
1 log(2π) ∞ B_1(t)
logΓ(s)=(s-─)logs-s+────-∫────dt,
2 2 0 s+t
where B_1 is the first Bernoulli function.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 223.139.118.209
推
01/19 23:38, , 1F
01/19 23:38, 1F
推
01/20 00:03, , 2F
01/20 00:03, 2F
→
01/20 14:21, , 3F
01/20 14:21, 3F
推
01/21 01:43, , 4F
01/21 01:43, 4F
→
01/21 09:37, , 5F
01/21 09:37, 5F