Re: [代數] ring & ideal

看板Math作者 (腦海裡依然記得妳)時間15年前 (2011/01/13 17:37), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《jayfrog (宅可宅 非常宅)》之銘言: : 1. : Let R be a ring such that x^2=x for all x belong R. : Show that R is commutative. (1) (a+1)=(a+1)^2=a^2+2a+1=a+2a+1 => 2a=0 (2) (a+b)=(a+b)^2=a^2+ab+ba+b^2=a+ab+ba+b => ab+ba=0 by(1) => 2(ab)=0 => ab=-ab by(2) => ab+ba=-ab+ba=0 => ab=ba : 2. : Let R be a commutative ring. If Mis an ideal, abbreviate MM by M^2. : Let M_1, M_2 be two ideals such that M_1+M_2=R. : Show that M_1 ^2 + M_2 ^2 =R -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 125.224.177.123
文章代碼(AID): #1DBiUytd (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):
文章代碼(AID): #1DBiUytd (Math)