Re: [代數]

看板Math作者 (阿鄉)時間15年前 (2011/01/06 19:22), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/4 (看更多)
※ 引述《k591 (焦。糖。瓶。果)》之銘言: : 1.If G is nonabelian of order p^3 (p is a prime) : (a) |Z(G)| (hint: Z(G) > {1}) The center of a p-group G, Z(G), is always non-trivial. So |Z(G)| = p, p^2, or p^3. Case 1, |Z(G)|=p^3, G is abelian. Contradiction. Case 2, |Z(G)|=p^2, G/Z(G) is cyclic. So G is abelian. Contradiction. These implies |Z(G)|=p. : (b) Show that G'=Z(G) Note that G/Z(G) is abelian (Group of order p^2) => Z(G) contains G'. But the only subgroup of Z(G) is {1} or Z(G). And {1}≠G'(G/{1} is non-abelian) So G'=Z(G). : 2.Show that Inn(A5) isomorphism to A5 Consider A_5 → Inn(A_5) by g → f_g, where f_g(x)=gxg^{-1}. This is surjective by definition, This is injective since A_5 is simple. So it's an isomorphism. : 拜託給個方向! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 219.71.210.134 ※ 編輯: yusd24 來自: 219.71.210.134 (01/06 19:24)

01/06 19:25, , 1F
感激不盡!!thx.
01/06 19:25, 1F
文章代碼(AID): #1D9QNjgl (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
代數
15年前, 01/06
完整討論串 (本文為第 2 之 4 篇):
代數
1
8
6年前, 10/30
代數
2
3
13年前, 03/22
代數
1
1
代數
15年前, 01/06
文章代碼(AID): #1D9QNjgl (Math)