Re: [線代] 線代(15)

看板Math作者 (夢想之火)時間20年前 (2005/09/05 00:37), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《PttFund (批踢踢基金只進不出)》之銘言: : 試求 : [ 1 0 0 0 0 ... 0 ] : [ -2 1 0 0 0 ... 0 ] : [ 0 -2 1 0 0 ... 0 ] : [ 0 0 -2 1 0 ... 0 ] : [ . . . . . ... . ] : [ 0 ... 0 0 -2 1 0 ] : [ 0 ... 0 0 0 -2 1 ] : 的反矩陣. Ans: Let [ 1 0 0 0 ... 0 0 0 ] [ -2 1 0 0 ... 0 0 0 ] [ 0 -2 1 0 ... 0 0 0 ] [ 0 0 -2 1 ... 0 0 0 ] = A [ . . . . ... . . . ] [ 0 0 0 0 ... -2 1 0 ] [ 0 0 0 0 ... 0 -2 1 ] If A is a matrix with order n Then [ 1 0 0 ... 0 ] [ -2 1 0 ... 0 ] [ (-2)^2 -2 1 ... 0 ] A^(-1)=[ (-2)^3 (-2)^2 -2 ... 0 ] [ . . . . ] [ (-2)^(n-1) (-2)^(n-2) (-2)^(n-3) ... 1 ] # (Hint: 利用歸綜法) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.128.28.250
文章代碼(AID): #136oApAt (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
線代
1
2
完整討論串 (本文為第 2 之 2 篇):
線代
1
2
文章代碼(AID): #136oApAt (Math)