Re: [線代] 線代(12)

看板Math作者 (好想去Salzburg)時間20年前 (2005/08/23 20:33), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《PttFund (批踢踢基金只進不出)》之銘言: : (a) Prove that the eigenvalues of a Hermitian matrix (A* = A) are : all real. consider that Ax=λx where λ is eigenvalue of A and x is the corresponding eigenvector take * ont the both side, ie, x*A*=λ*x* (a) since A is Hermitian, x*A=λ*x* multiply x on the both side, x*Ax=λ*x*x x*λx=λ*|x|, λ|x|=λ*|x| since |x|=\=0 , that is λ=λ* ie, all the eigenvalue of a Hermitian matrix are all real Q.E.D. : (b) What can you say about the eigenvalues of a unitary matrix : (A*A = I)? Prove your assertion. according to (a), x*A^-1=λ*x* multiply x on the both side, x*A^-1x=λ*x*x x*(1/λ)x=λ*|x| (1/λ)|x|= λ*|x| since |x|=\=0, λ*λ=1 Q.E.D. -- 有錯請指教Orz~ -- 羅西尼:『莫札特不是最偉大的音樂家,他實在是世界上唯一的音樂家。』 蕭邦最後遺言:『請演奏莫札特的音樂追憶我。』 海頓:『親朋好友常說我才比天高,但莫札特卻在我之上。』 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.229.29.188
文章代碼(AID): #132nUk79 (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):
文章代碼(AID): #132nUk79 (Math)