Re: [代數] 代數(2)

看板Math作者 (妳對我的好)時間20年前 (2005/07/25 00:01), 編輯推噓1(102)
留言3則, 1人參與, 最新討論串4/4 (看更多)
: If G is a group of order 2k, where k is odd, : then G has a subgroup H of order k. ====================================================== |G| = 2k , k is odd. A(G) :={f:G ─> G | f is a bijection map (1-1 and onto)} The operation on A(G) is the composition of functions. Then A(G) is a group which is isomorphic to S(2k) For each g in G, let Tg: G ─> G Tg(x):= gx 1. ι:G ─> A(G) ι(g) :=Tg is a well-defined group monomorphism (1-1 homomorphism) check: a. Tg is in A(G) b. ι is a group homomorphism c. Ker(ι) = {e} (the identity in G) Hence G is embeded into A(G) as a subgroup ι(G) of A(G). 2. identify A(G) and S(2k). If α in G is a element of order 2, then ι(α) is a odd permutation. (check the number of transpositions of it ) Therefore the set of all even permutations of ι(G) is a subgroup of ι(G) of order |ι(G)|/2 = k. The preimage of it is a subgroup of G of order k. ~~ 證明好像很長 不知道有沒有短一點的 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 210.85.44.161

220.135.132.108 07/25, , 1F
G --> S(2k) 的embeding是well-know的(Cayley thm)
220.135.132.108 07/25, 1F

220.135.132.108 07/25, , 2F
所以考慮α的orbit, α是一些不相交對換的積
220.135.132.108 07/25, 2F

220.135.132.108 07/25, , 3F
but α doesn't fix any element of G,so α is odd
220.135.132.108 07/25, 3F
文章代碼(AID): #12uxj1Nq (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 4 之 4 篇):
文章代碼(AID): #12uxj1Nq (Math)