Re: [代數] 代數(5)

看板Math作者 (沉醉東風...)時間20年前 (2005/07/24 16:51), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/2 (看更多)
※ 引述《PttFund (批踢踢基金只進不出)》之銘言: : Let G be an abelian group of order 360. : (a) How many Sylow 3-subgroups does G have? Because G is abelian, every subgroup of G is normal in G. Hence G has only one Sylow 3-subgroup. : (b) Up to isomorphism, describe all the possible structures of G. By fundamental theorem of finite abelian groups, we have G = Z_360 ps: Z_m x Z_n = Z_mn if and only if (m,n)=1 = Z_180 x Z_2 . . . (依此類推) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.122.140.213 ※ 編輯: elvolvo 來自: 140.122.140.213 (07/24 16:59)

140.112.218.142 07/24, , 1F
就把 360 質因數分解 @O@
140.112.218.142 07/24, 1F
文章代碼(AID): #12urQZlu (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):
文章代碼(AID): #12urQZlu (Math)