[分析] 高微(15)

看板Math作者 (批踢踢基金只進不出)時間20年前 (2005/07/23 16:39), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/2 (看更多)
In a metric space (S,d), let A be non-empty subset of S. Define a function f_A(x): S→R by the formula f_A(x) = inf { d(x,y) : y in A } for each x in S. The value f_A(x) is called the distance from x to A. (a) Prove that f_A is uniformly continuous on S. (b) Prove cl(A) = { x in S : f_A(x) = 0 }, where cl(A) means the closure of A. 依上, 我們可以有下列的事實: In a metric space (S,d), let A and B be disjoint closed subsets of S. Prove that there are two disjoint open sets U and V in S such that A < U and B < V. -- 我好窮啊,我好缺批幣啊 ,你有摳摳ㄋㄟ 可憐可憐我吧,施捨一點吧 請到(P)LAY-->(P)AY-->(0)GIVE-->PttFund-->吧 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.218.142
文章代碼(AID): #12uW9UuS (Math)
討論串 (同標題文章)
文章代碼(AID): #12uW9UuS (Math)