Re: [分析] 初微(15)

看板Math作者 (批踢踢基金只進不出)時間20年前 (2005/07/16 09:55), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《PttFund (批踢踢基金)》之銘言: : Suppose that h > 0 and f' exists and is finite for every x : in (a-h,a+h). Also suppose that f is continuous on [a-h,a+h]. : If f"(a) exists, show that the limit : f(a+h) - 2f(a) + f(a-h) : lim ------------------------- = f"(a) : h→0 h^2 : Note: 請順便給一個反例 f(x), 使得左邊的極限式存在, 但 f" 不存在. 這個用 L'Hopital's rule 做就可以了: f(a+h) - 2f(a) + f(a-h) f'(a+h) - f'(a-h) lim ------------------------- = lim ------------------- h→0 h^2 h→0 2h f'(a+h) - f'(a) f'(a-h) - f'(a) = 1/2 { lim ----------------- + lim ----------------- } h→0 h h→0 -h = 1/2 { f"(a) + f"(a) } = f"(a). 反例也很簡單, 可以想一想 :p -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.218.142
文章代碼(AID): #12s6a9m6 (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):
文章代碼(AID): #12s6a9m6 (Math)