Re: [理工] 離散生成函數
※ 引述《PTT007 (鍵盤007)》之銘言:
: (1)
: There are five kinds of balls: red, black, white, blue, and green.
: We draw balls 8 times and then there are 5^8 combinations for these drawings.
: (a) How many of these 5^8 drawings contain all the five colors of balls?
我會討論,因為一定要有5種顏色,所以剩下3個地方,有111(皆不同顏色),21(2同一不
同),3(皆同)。
所以,
第一種:C(5,3)*8!/2^3 (因為有三種,兩個顏色相同)
第二種:C(5,2)*8!/3!*2
第三種:C(5,1)*8!/4!
: (b) How many drawing of (a) contain exactly three colors in the first 4 balls
: of drawing the 8 times?
: (2)
: Consider the equation x+y+z=11, where x,y and z are nonegative integers.
: How many solutions does it have if the condition 5>=x>=2, 6>=y>=3, 7>=z>=4
: is satisfied?
相當於求x^11次方的係數。
(x^2+x^3+x^4+x^5)(x^3+x^4+x^5+x^6)(x^4+x^5+x^6+x^7)
=x^9(1-x^4/1-x)(1-x^4/1-x)(1-x^4/1-x) (提出x^2, x^3, x^4)
=x^9(1-x^4)^3(1-x)^(-3)
=x^9(1-3x^4+...)Σ(r=0~∞)C(3+r-1,r)x^r
所以11次方的係數是 C(4,2)。
其實這題上界可以忽略,把2,3,4分別給xyz之後,只剩下2,不管怎樣分都不會爆,相當
於解 x+y+z=2 ,其中x, y, z >=0 ,解出來就是 C(2+3-1,2)=C(4,2)
: 求詳解
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.120.228.19
推
12/28 13:08, , 1F
12/28 13:08, 1F
→
12/28 13:32, , 2F
12/28 13:32, 2F
→
12/28 13:46, , 3F
12/28 13:46, 3F
→
12/28 13:46, , 4F
12/28 13:46, 4F
→
12/28 13:47, , 5F
12/28 13:47, 5F
推
12/28 14:00, , 6F
12/28 14:00, 6F
→
12/28 14:00, , 7F
12/28 14:00, 7F
→
12/28 14:00, , 8F
12/28 14:00, 8F
→
12/28 14:01, , 9F
12/28 14:01, 9F
→
12/28 14:04, , 10F
12/28 14:04, 10F
→
12/28 14:05, , 11F
12/28 14:05, 11F
推
12/28 14:06, , 12F
12/28 14:06, 12F
推
12/28 18:05, , 13F
12/28 18:05, 13F
→
12/28 21:31, , 14F
12/28 21:31, 14F
推
12/28 22:22, , 15F
12/28 22:22, 15F
推
12/28 22:24, , 16F
12/28 22:24, 16F
→
12/28 22:24, , 17F
12/28 22:24, 17F
推
12/29 12:50, , 18F
12/29 12:50, 18F
推
12/29 13:00, , 19F
12/29 13:00, 19F
→
12/29 13:02, , 20F
12/29 13:02, 20F
→
12/29 13:03, , 21F
12/29 13:03, 21F
推
12/30 02:53, , 22F
12/30 02:53, 22F
討論串 (同標題文章)