Re: [理工] 線代 TorF
※ 引述《zero200488 (Kiowa)》之銘言:
: 1.A linear transformation is onto if and only if the column of its standard
: matrix span its range.-------------------F
改成the row of its standard matrix
用到的觀念是
假設T:V ->W ;dim(V)=n,dim(W)=m,B為V中ㄧ組有序基底,存在[T]B=A,A is m by n
onto -- rank(T)=dim(W)=m,可得A為列獨立
: 2.The ptoduct of square matrices is always defined.---------------F
矩陣相乘必須滿足前者行數等於後者列數
: 3.The pivot columns of the reduced row echelon form of A form a basis for
: the column space of A.-------------F
rref做的運算是列運算,不改變其列空間,其pivot rows則為該列空間之基底,若要為
該行空間之基底,必須為square
: 4.Every square matrix has a complex eigenvalue.----------T
: 為什麼?
real contain in complex,so it is alwyas ture.
: 5.Let W be a two-dimensional subspace of R^3. The orthogonal projection
: operator onto W is onto.---------------F
這題感覺前面這句話"two dimensional subspace of R^3",就錯了,二為空間怎麼可能
會是三維的子空間
ex,W=span{(0,1),(1,0)}怎麼展延都不會是R^3
: 6.For a given set of data plotted in the xy-plane,the least-squares line is
: the unique line in the plane that minimizes the sum of the vertical distan-
: ces from the data points to the line.---------F
"unique" 要行獨立才會唯一
: 問題有點多 謝謝
以上有誤煩請指教
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.193.7.20
※ 編輯: KAINTS 來自: 123.193.7.20 (01/31 00:48)
推
01/31 00:51, , 1F
01/31 00:51, 1F
→
01/31 00:53, , 2F
01/31 00:53, 2F
→
01/31 00:53, , 3F
01/31 00:53, 3F
→
01/31 01:09, , 4F
01/31 01:09, 4F
→
01/31 01:09, , 5F
01/31 01:09, 5F
推
01/31 01:11, , 6F
01/31 01:11, 6F
→
01/31 01:21, , 7F
01/31 01:21, 7F
→
01/31 01:38, , 8F
01/31 01:38, 8F
→
01/31 01:57, , 9F
01/31 01:57, 9F
→
01/31 08:57, , 10F
01/31 08:57, 10F
→
01/31 11:12, , 11F
01/31 11:12, 11F
推
01/31 11:15, , 12F
01/31 11:15, 12F
→
01/31 11:16, , 13F
01/31 11:16, 13F
推
01/31 12:19, , 14F
01/31 12:19, 14F
→
01/31 18:44, , 15F
01/31 18:44, 15F
推
01/31 19:28, , 16F
01/31 19:28, 16F
→
01/31 19:29, , 17F
01/31 19:29, 17F
→
01/31 19:29, , 18F
01/31 19:29, 18F
推
02/01 12:46, , 19F
02/01 12:46, 19F
→
02/01 12:46, , 20F
02/01 12:46, 20F
推
02/01 15:08, , 21F
02/01 15:08, 21F
→
02/01 15:09, , 22F
02/01 15:09, 22F
→
02/01 15:26, , 23F
02/01 15:26, 23F
討論串 (同標題文章)