Re: [理工] [工數] 拉氏ODE
※ 引述《peacrackers (歡樂可樂果)》之銘言:
: 原題目:In the s-domain, via Laplace transform, one has
: 1 s s
: Y(s) = -------- + -------------- - ----------- e^(-πs)
: s^2+16 (s^2+16)^2 (s^2+16)^2
: If this Y(s) is used to describe a 2nd-order Ordinary
: Differential Equation : y”(t) + p(t)y’(t) + q(t)y(t) = r(t) ,
: with the initial conditions : y(0)=0 and y’(0)=1 , find
: p(t), q(t) and r(t) , respectively.
:
: 已經將 Y(s) → y(t)了,好像…沒什麼幫助?還是出發點錯了?
: 肯請大家賜教。
2
把 s + 16 乘過去
2 s s -πs
( s + 16 ) Y(s) = 1 + ───── - ───── e
s^2 + 16 s^2 + 16
-----------------------------------------------------
對原本的 ODE 取 Laplace transform
2
s Y(s) - 1 + L{ p y' + q y } = R(s)
移項
2
s Y(s) + L{ p y' + q y } = 1 + R(s)
----------------------------------------
如果 L{ py' + qy } = 16 Y(s)
s s -πs
R(s) = ──── - ──── e
s^2 + 16 s^2 + 16
不就天下太平了XD
所以 p(t) = 0 , q(t) = 16
#
r(t) = cos4t H(t) - cos4(t-π)H(t-π)
= cos4t [ H(t) - H(t-π) ]
#
H : Heaviside function
--
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.248.175.159
推
05/23 08:22, , 1F
05/23 08:22, 1F
推
05/23 16:20, , 2F
05/23 16:20, 2F
→
05/23 16:20, , 3F
05/23 16:20, 3F
→
05/23 16:21, , 4F
05/23 16:21, 4F
→
05/23 17:34, , 5F
05/23 17:34, 5F
→
05/23 17:35, , 6F
05/23 17:35, 6F
推
05/25 12:26, , 7F
05/25 12:26, 7F
討論串 (同標題文章)