Re: [理工] [工數][聯立ode]
看板Grad-ProbAsk作者ntust661 (Enstchuldigung~)時間15年前 (2011/02/28 13:43)推噓3(3推 0噓 1→)留言4則, 4人參與討論串2/2 (看更多)
※ 引述《asdf322505 ()》之銘言:
: y1'= -9y1+4y2-4y3
: y2'= -15y1+7y2-5y3
: y3'= 15y1-6y2+8y3
: ans; y1=2c1e^t+c3e^3t
: y2=5c1e^t+c2e^2t
: y3=c2e^2t-3c3e^3t
: 這題怎嚜解?
Y' = A Y
mt
Y = X e
mt
Y'= X m e
mt mt
X m e = A X e
m X = A X (eigenvalue problem)
-9-m 4 -4
│A - m│= [-15 7-m -5 ]
15 -6 8-m
3 3 2
= (-1) ( m - 6 m + ([-63+60]+[-72+60]+[56-30]) m - ([-9*7*8-20*15
-60*6 ]-[-60*7-60*8-30*9]) )
detA = (-504 - 300 - 360) + (420 + 480 + 270)
= -1164 + 1170 = 6
3 3 2
故特徵方程式 (-1) (m - 6m + 11m - 6 ) = 0
m = 1 , m = 2 , m = 3
是根!
特徵向量呢
-10 4 -4
│A - 1│= [-15 6 -5 ] , Rank(A - I) = 2
15 -6 7
-15 x1 + 6 x2 - 7 x3 = 0
-15 x1 + 6 x2 - 5 x3 = 0
x1 = 6 , x2 = 15 , x3 = 0
6 2
特徵向量 X = [ 15 ] = [ 5 ]
0 0
-11 4 -4
│A - 2│= [-15 5 -5 ] , Rank(A - 2I) = 2
15 -6 6
-15 x1 + 5 x2 - 5 x3 = 0
-15 x1 + 6 x2 - 6 x3 = 0
x1 = 0 , x2 = 1 , x3 = 1
0
特徵向量 X = [ 1 ]
1
-12 4 -4
│A - 3│= [-15 4 -5 ] , Rank(A - 3I) = 2
15 -6 5
-15 x1 + 4 x2 - 5 x3 = 0
-15 x1 + 6 x2 - 5 x3 = 0
x2 = 0 , x1 = -1 , x3 = 3
-1
特徵向量 X = [ 0 ]
3
mt
故解 Y = X e
2 t 0 2t -1 3t
Y = [ 5 ] c1 e + [ 1 ] c2 e + [ 0 ] c3 e
0 1 3
--
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.45.251.207
推
02/28 14:13, , 1F
02/28 14:13, 1F
推
02/28 15:58, , 2F
02/28 15:58, 2F
→
02/28 17:06, , 3F
02/28 17:06, 3F
推
02/28 19:18, , 4F
02/28 19:18, 4F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):