Re: [理工] [離散] 99中山資工
※ 引述《annheilong (方格子)》之銘言:
: 3. Find the coefficient of x^72 in (x^6 + X^7 + X^8 + ...)^10
(x^6 + x^7 + x^8 + ...)^10
= x^60 * (1 + x + x^2 + ... )^10
所以相當於求 (1 + x + x^2 + ... )^10 中 x^12項係數
(1 + x + x^2 + ... )^10
= (1/1-x)^10
= (1-x)^(-10)
∞ -10
= Σ C *(-x)^i
i=0 i
-10 21
代入 i=12可得 x^12項係數為 C = C
12 12
: 4. Let A be a set with |A| = n, and let R be a binary
: relation on A that is reflexive and antisymmetric.
: (a) What is the maximum value for |R|
: (b) How many antisymmetric relations can have this size?
(a)
1+2+3+...+n = n(n+1)/2
所以最多 n(n+1)/2 個
(b)
n(n-1)/2
2
(就是二的1+2+...+(n-1)次方種)
這題不確定對不對..
我英文不太好不是很確定題意= ="
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.113.139.82
推
02/28 17:04, , 1F
02/28 17:04, 1F
推
02/28 17:25, , 2F
02/28 17:25, 2F
推
02/28 19:24, , 3F
02/28 19:24, 3F
推
02/28 20:32, , 4F
02/28 20:32, 4F
→
02/28 20:32, , 5F
02/28 20:32, 5F
→
02/28 20:50, , 6F
02/28 20:50, 6F
推
03/01 02:21, , 7F
03/01 02:21, 7F
推
03/01 06:20, , 8F
03/01 06:20, 8F
討論串 (同標題文章)