Re: [理工] 拉式轉換?

看板Grad-ProbAsk作者 (none)時間15年前 (2010/11/16 09:27), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
L{y} = Y L{y'} = sY - 0 = sY L{y''} = s^2Y - 0*S - 1 = s^2Y - 1 右邊的項整理後 → e^t - e^tu(t-10) -e^10δ(t-10) 1 L{e^t} = ------- s - 1 1 L{e^tu(t-10))} = e^(-10s)L{e^(t+10)} = e^(10-10s)----- s - 1 L{e^10δ(t-10)} = e^10e^-10s 左邊把有Y term整理→ 1 e^(10-10s) Y(s^2+4s+5)= 1 + ----- - ----------- - e^(10-10s) s - 1 s - 1 (右邊通先整理) s - se^(10-10s) = ---------------------- s - 1 s - se^(10-10s) Y = --------------------- (s^2+4s+5)(s-1)                 常數   t-domain shift  ↑    ↑ s e^10 s e^(-10s) = ------------------ - ----------------- (s^2+4s+5)(s-1) (s^2+4s+5)(s-1) inverse Laplace transform: s 1 1 1 s - 5 L-1{------------------} = L-1{--- x ----- - --- x ------------ } (s^2+4s+5)(s-1) 10 s - 1 10 (s^2+4s+5) 1 1 = ---e^t - ---[e^(-2t)cos(t) - 7e^(-2t)sin(t)] 10 10 ...(1) ∴ e^10 s e^(-10s) L-1{ ----------------- } (s^2+4s+5)(s-1) 1 =--- e^10 [e^(t-10)u(t-10)-e^(-2(t-10))cos(t-10)u(t-10) 10 +7e^(-2((t-10))sin(t-10)] ...(2) ∴ y(t) = (1) + (2) 有錯還煩請高手不吝指正 : y"+4y'+5y=[1-u(t-10)]e^t-e^10&(t-10) , y(0)=0 , y'(0)=1 : ^ : 脈衝 : 請問怎麼解呢? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.114.123.102 ※ 編輯: Maxwell5566 來自: 140.114.123.102 (11/16 09:28)
文章代碼(AID): #1CuTuPDu (Grad-ProbAsk)
文章代碼(AID): #1CuTuPDu (Grad-ProbAsk)