Re: [理工] 拉式轉換?
L{y} = Y
L{y'} = sY - 0 = sY
L{y''} = s^2Y - 0*S - 1 = s^2Y - 1
右邊的項整理後 → e^t - e^tu(t-10) -e^10δ(t-10)
1
L{e^t} = -------
s - 1
1
L{e^tu(t-10))} = e^(-10s)L{e^(t+10)} = e^(10-10s)-----
s - 1
L{e^10δ(t-10)} = e^10e^-10s
左邊把有Y term整理→
1 e^(10-10s)
Y(s^2+4s+5)= 1 + ----- - ----------- - e^(10-10s)
s - 1 s - 1 (右邊通先整理)
s - se^(10-10s)
= ----------------------
s - 1
s - se^(10-10s)
Y = ---------------------
(s^2+4s+5)(s-1)
常數 t-domain shift
↑ ↑
s e^10 s e^(-10s)
= ------------------ - -----------------
(s^2+4s+5)(s-1) (s^2+4s+5)(s-1)
inverse Laplace transform:
s 1 1 1 s - 5
L-1{------------------} = L-1{--- x ----- - --- x ------------ }
(s^2+4s+5)(s-1) 10 s - 1 10 (s^2+4s+5)
1 1
= ---e^t - ---[e^(-2t)cos(t) - 7e^(-2t)sin(t)]
10 10
...(1)
∴
e^10 s e^(-10s)
L-1{ ----------------- }
(s^2+4s+5)(s-1)
1
=--- e^10 [e^(t-10)u(t-10)-e^(-2(t-10))cos(t-10)u(t-10)
10
+7e^(-2((t-10))sin(t-10)]
...(2)
∴ y(t) = (1) + (2)
有錯還煩請高手不吝指正
: y"+4y'+5y=[1-u(t-10)]e^t-e^10&(t-10) , y(0)=0 , y'(0)=1
: ^
: 脈衝
: 請問怎麼解呢?
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.114.123.102
※ 編輯: Maxwell5566 來自: 140.114.123.102 (11/16 09:28)
討論串 (同標題文章)
完整討論串 (本文為第 2 之 2 篇):
理工
0
2