Re: [理工] [資結] Tree的性質

看板Grad-ProbAsk作者 (ache)時間15年前 (2010/09/22 02:35), 編輯推噓1(101)
留言2則, 2人參與, 最新討論串2/2 (看更多)
※ 引述《huangwh (香腸)》之銘言: 科目:資料結構 範圍:二元樹 題目: 就下列4種Binary Tree,分別自(A)~(D)中填入Correct選項 1.任意的Binary Tree 2.Full Binary Tree 3.Complete Binary Tree 4.Strict Binary Tree A n0=n2+1 B n=2n0-1 C 高度=log(n+1) [礙於輸入關係,此基底為2] D n0+n2<=n 答案: 1.A 2.A B C D 3.A C D 4.A B D 問題: 我的問題在選項 D 筆記上寫: n0+n2<=n n0+n2<=n0+n1+n2<=n0+n2+1 |_______| 問題所在 |_______>這一段是怎樣得出的? | n0+n2<=n0+n1+n2 | 0<=n1 | | n0+n1+n2<=n0+n2+1 ------- n1<=1 0<=n1<=1 便可得 2 3 4 皆為所求 ref: 如果你是指洪兔的筆記,這段不是嚴謹的推導,只是在解釋選項。 選項D的筆記似乎漏抄了部份文字, 原選項為「n0 + n2 <= n <= n0 + n2 + 1」 則: 令 n : 總node數; n1: Degree 1 之node數 n2: Degree 2 之node數 n = n0 + n1 + n2 If Binary Tree 非空: n0 = n2 + 1 (by Thm.) 選項(D) (i) n0 + n2 <= n ( n2 + 1 ) + n2 <= n0 + n1 + n2 2n2 + 1 <= 2n2 + n1 + 1 等號成立於 n1 = 0 ; (Note: 這裡條件不足以推論至n1<=1) n <= n0 + n2 + 1 ( n0 + n1 + n2 ) <= n0 + n2 + 1 n1 <= 1; (ii) by Def: 任意 Binary Tree : 0 <= n1 <= n-1 Full Binary Tree : n1 = 0 Complete Binary Tree : 0 <= n1 < 1 Strickly Binary Tree : n1 = 0 by(i),(ii) choose 2,3,4 -- 有錯或誤會原意尚祈指正 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.160.112.174 ※ 編輯: witz 來自: 118.160.112.174 (09/22 02:55)

09/22 15:05, , 1F
個人認為任意BT 0<=n1<=n-1
09/22 15:05, 1F

09/22 15:52, , 2F
嗯~感謝~是n-1沒錯:p
09/22 15:52, 2F
※ 編輯: witz 來自: 118.160.112.174 (09/22 15:52)
文章代碼(AID): #1CcFhfgj (Grad-ProbAsk)
文章代碼(AID): #1CcFhfgj (Grad-ProbAsk)