[理工] [工數] 拉氏~~~

看板Grad-ProbAsk作者 (eason)時間16年前 (2010/03/25 22:26), 編輯推噓4(408)
留言12則, 4人參與, 最新討論串1/2 (看更多)
1 L[cos^2 3t] cos^2 該怎麼下筆 如果是sin^2呢? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 125.228.221.160

03/25 22:31, , 1F
cos^2(3t) = [1 + cos(6t)]/2
03/25 22:31, 1F

03/25 22:37, , 2F
sin也一樣嗎/ 我三角公式忘了..
03/25 22:37, 2F

03/25 22:38, , 3F
這是微積分的2倍角公式 cos^2(x)=1+cos(2x)/2
03/25 22:38, 3F

03/25 22:38, , 4F
sin^2(x)=1-cos(2x)/2 這都是公式
03/25 22:38, 4F

03/25 22:39, , 5F
那sin是多少?
03/25 22:39, 5F

03/25 22:46, , 6F
你是說sin^2(3t)的答案嗎?? 上面有x代3t
03/25 22:46, 6F

03/26 00:22, , 7F
因為 cos(6t)=cos(3t+3t)=cos(3t)cos(3t)-sin(3t)sin(3t)
03/26 00:22, 7F

03/26 00:22, , 8F
=cos^2(3t)-sin^2(3t)=cos^2(3t)-[1-cos^2(3t)]
03/26 00:22, 8F

03/26 00:23, , 9F
=2cos(3t)-1
03/26 00:23, 9F

03/26 00:23, , 10F
錯 =2cos^2(3t)-1
03/26 00:23, 10F

03/26 00:24, , 11F
所以cos^2(3t)=[1+cos(6t)]/2
03/26 00:24, 11F

03/26 00:24, , 12F
不用硬背 多推幾次就記起來了
03/26 00:24, 12F
文章代碼(AID): #1BgtAUOy (Grad-ProbAsk)
討論串 (同標題文章)
文章代碼(AID): #1BgtAUOy (Grad-ProbAsk)