Re: [商管] [統計]-清大資應 機率論
※ 引述《ray77227 (crab)》之銘言:
: 98年有一題
: 題目是這樣 f(x)= x/s^2 exp(-x^2/2s^2) x>=0 where s>0 is a fixed number
: = 0 , otherwise
: 要求 1) mean of X 2) variance of X
: ∞
: 題目下面還給了Γ(x) = ∫ e^-t t^x-t dt then Γ(0.5)=π^0.5
: 0
: 這題跟同學想了很久都沒有結果 請問一下這應該要怎麼解比較好?
: 謝謝!
有點亂湊...看看參考就好
不保證正確= =
f(x)= x/s^2 exp(-x^2/2s^2) x>=0 where s>0
∞
E(x)=∫ x^2/s^2 exp(-x^2/2s^2)dx x>=0 where s>0
0
Let x^2/s^2 = W
x=sW^0.5 (where W>=0) dx= sdw / 2w^0.5
∞
E(X)=s/2 ∫ w^0.5 exp(-w/2)dw w>=0 where s>0
0 sπ^0.5 / 2
=s/2 * Γ(3/2) / 0.5^(1.5) = ------------------- = s*(π/2)^0.5
2^-0.5
Γ(3/2) = π^0.5 / 2
Let x^2 = U
2xdX = dU
∞
E(X^2)=1/2s^2 ∫ U exp(-U/2s^2)du u>=0 where s>0
0
=1/2s^2 * Γ(2) / (1/2s^2)^2 = 2s^2
V(X) = 2s^2 -[s*(π/2)^0.5]^2 = (2-π/2)s^2
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.195.33.224
→
03/10 10:35, , 1F
03/10 10:35, 1F
→
03/10 22:43, , 2F
03/10 22:43, 2F
推
03/11 10:38, , 3F
03/11 10:38, 3F
→
03/11 12:27, , 4F
03/11 12:27, 4F
推
03/11 12:58, , 5F
03/11 12:58, 5F
→
03/11 12:59, , 6F
03/11 12:59, 6F
→
03/11 15:00, , 7F
03/11 15:00, 7F
※ 編輯: urml 來自: 61.222.220.236 (03/11 15:04)
→
03/11 15:04, , 8F
03/11 15:04, 8F
→
03/12 00:30, , 9F
03/12 00:30, 9F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):