Re: [理工] [線代]-二次式

看板Grad-ProbAsk作者 (考試快到了!!)時間16年前 (2010/03/03 15:18), 編輯推噓2(201)
留言3則, 3人參與, 最新討論串2/2 (看更多)
※ 引述《gn00618777 (123)》之銘言: : By using orthogonal transformations,reduce following quadratic forms to : sums of squares : 2 2 : a) 2x1 +x2 -4x1x2-4x2x3 2 -2 0 X1 Q= [X1 X2 X3][-2 1 -2 ] [X2 ] 0 -2 0 X3 =X^t A X 特徵值 4 1 -2 當 λ = 4 V1 = c2[2 -2 1]^t = [2/3 -2/3 1/3]^t λ = 1 V2 = c3[2 1 -2]^t = [2/3 1/3 -2/3]^t λ = -2 V3 = c1[1 2 2]^t = [1/3 2/3 2/3 ]^t 令S = [v1 v2 v3] S為正交矩陣 S^t = S^-1 X=SY 4 0 0 y1 Q=(SY)^t A SY = Y^tS^tASY =[y1 y2 y3][0 1 0 ][y2 ] 0 0 -2 y3 Q = 4y1^2 +y2^2 -2y3^2 : b) 8x1x3+2x1x4+2x2x3+8x2x4 b矩陣比較大 囧 不過方法還是一樣 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 59.105.159.190

03/03 16:28, , 1F
0.0
03/03 16:28, 1F

03/03 17:26, , 2F
C大打很久XDDD
03/03 17:26, 2F

03/03 17:52, , 3F
雖然看不懂..但是很感謝
03/03 17:52, 3F
文章代碼(AID): #1BZWr8rY (Grad-ProbAsk)
討論串 (同標題文章)
文章代碼(AID): #1BZWr8rY (Grad-ProbAsk)