[理工] [線代]-矩陣運算與行列式的証明

看板Grad-ProbAsk作者 (海嗨咍)時間16年前 (2009/11/09 10:34), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/3 (看更多)
不好意思 有幾題不太懂 請有空的大大幫我解題 ^__^ 1.回答對或錯 The solution set of any system of m linear equations in n unknows is a subspace of F^n. 答案是false,因為n<m的時候 有可能no solutions? 2.Prove that if A is an invertible upper triangular matrix then the classical adjoint of A and A^-1 are upper triangular. 3.Let k=\=0 be a nonzero number,show hy induct that for all positive integers n. n [cos(x) ksin(x)] = [cos(nx) ksin(nx)] [(-1/k)*sin(x) cos(x)] [(-1/k)*sin(nx) cos(nx) ] 4.(a)Find all real matrices A for which (A^T)A=0{A的轉置*A=0} (b)Find all matrices B for which (B^H)B=0{A的Hermitian*A=0} 5.Prove that (a).If A has a full row of zeros,then A has no right inverse. (b).If A has a full column of zeros,then A has no left inverse. (c).If A is square and either a full row or a full column of zeros,then A is singular. 不好意思 我自己一個人唸書 所以沒有趴惹可以問 麻煩各位大大有空幫忙解答 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.116.236.43 ※ 編輯: sea1985 來自: 140.116.236.43 (11/09 10:59)
文章代碼(AID): #1Azt_9BN (Grad-ProbAsk)
討論串 (同標題文章)
文章代碼(AID): #1Azt_9BN (Grad-ProbAsk)