[問題] 台科大工管統計

看板Grad-ProbAsk作者 (小汪)時間16年前 (2009/03/18 22:25), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串1/2 (看更多)
Prove that the inequality P(X≧1,Y≧1)≦min( E(X) , E(Y) ) holds for any two non-negative continuous random variables X and Y with joint density f(x,y),where X is not necessarily independent of Y and min(a,b) equals the smaller value between a and b. 答案 由馬可夫不等式知 P(X≧1)≦E(X) 且 P(Y≧1)≦E(Y) P(X≧1,Y≧1)≦P(X≧1,Y≧1)+P(X≧1,Y< 1)=P(X≧1)≦E(X) P(X≧1,Y≧1)≦P(X≧1,Y≧1)+P(X <1,Y≧1)=P(Y≧1)≦E(Y) => P(X≧1,Y≧1)≦min( E(X),E(Y) ) 答案大概是這樣 可是解答我看不太懂 有強者能出來解釋一下嗎 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.228.159.97

03/18 22:31, , 1F
可以由2乘2表來看
03/18 22:31, 1F
文章代碼(AID): #19mGHUM8 (Grad-ProbAsk)
文章代碼(AID): #19mGHUM8 (Grad-ProbAsk)