Re: [問題] 中央光電工數 聯立ode

看板Grad-ProbAsk作者 (我是Shiny)時間16年前 (2009/03/18 01:44), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《sky80577 (2004...)》之銘言: : http://www.wretch.cc/album/show.php?i=sky80577&b=1&f=1378326854&p=10 : d題目如網址 : 請問該如何算阿 : 我怎麼帶都怪怪的@@ 由 i1/k1 + i2/k2 = 1 得 i1 = k1( 1 - i2/k2 ) i2 = k2( 1 - i1/k1 ) 故 i1' = -k1i1i2 = -k1i1k2( 1 - i1/k1 ) = -k1k2i1 + k2i1^2 即 i1^(-2)i1' + k1k2i1^(-1) = k2 取 i1^(-1) = y 代入上式可得 y' - k1k2y = -k2 積分因子 p = e^(-k1k2x) py = ∫-k2*e^(-k1k2x)dx = 1/k1*e^(-k1k2x) + c1 即 y = 1/k1 + c1*e^(k1k2x) 因此 i1(x) = 1 k1 ------------------ = ------------------ 1 1 + c1k1*e^(k1k2x) --- + c1*e^(k1k2x) k1 同理 i2^(-2)i2' - k1k2i2^(-1) = -k1 取 i2^(-1) 代入上式 解得 i2(x) = 1 k2 ------------------ = ------------------ 1 1 + c2k2*e^(k1k2x) --- + c2*e^(k1k2x) k2 由 i1(0) i2(0) ------ + ------ = 1 k1 k2 可得 1 1 -------- + --------- = 1 1 + c1k1 1 + c2k2 此解參考 superyu 詳解 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 125.229.83.84
文章代碼(AID): #19l-5zXv (Grad-ProbAsk)
文章代碼(AID): #19l-5zXv (Grad-ProbAsk)