Re: [計量] 幾題數學~~
※ 引述《butini (hackneyed)》之銘言:
: 救我的排列組合= =太爛了
: Test 5
: 10. Set X has x members and set Y has y members. Set Z i s composed of all
: members that are in either set X or set Y with the exception of the k common
: members (k>0).Which of the follow ing represents the numbers in set Z?
: *看不懂k代表什麼? Ans: x+y-2k
z : x + y 扣掉共有的
k : x y 中共有的...
: Test 7
: 1.Each person at a party shook hands exactly once with each other at the
: party. There was a total of 21 handshacks exchanged at the party.
: Column A: the number of people at the part.
: Column B: 8
: *我算7 選A 可是答案是B..
C(x,2) = 21 人數是7沒錯
但是這題問題是比大小吧..所以選 b沒錯阿..8 > 7
: 20.Four boys and three girls are arranged seatts in two rows, the first
: containing four seats and the second three seats. How many possible
: arrangements are there if the boys and the girls sit next to each other?
: Ans: 288
畫圖最快..(可惜我bbs畫圖能力是0)
簡單說明..男女要交錯坐..所以三個位置的排列一定是(男女男)(男可互調 女位置固定)
四個位置的排列是(男女男女)(男女可互調 男之間 女之間也可互調)
決定三個座位 x 決定四個座位
C(4,2(男生)) x C(3,1(女生)) x 2!(男生位置互換) x C(2,2(男生)) x C(2.2(女生))
x 2(男女男女 and 女男女男) x 2!(男位置互換) x 2!(女位置互換)
= 6 x 3 x 2 x 1 x 1 x 2 x 2 x 2 = 36 x 8 = 288
: 21. 同題20. How many arrangements are there if three girls sit together?
: Ans:840
2種狀況 三個都在三個座位那 三個都在四個座位那
三個都在三個座位 :
決定三個座位 x 決定四個座位
C(3,3(女生)) X 3!(女生互換) x C(4,4) x 4!(男生互換) =3! x 4! =6 x24 = 144
三個都在四個座位那 :
決定三個座位 x 決定四個座位
C(4,3(男生)) x 3!(男生互換) x C(1,1(男生)) x C(3,3(女生)) x
2(男女女女 女女女男)x3!(女生互換)
= 4 x 6 x 1 x 1 x 2 x 6 = 288
144+288 = 432..?..我算不出那個答案來..
等一下我思考一下在算算看..
: Test 8
: 6.x+y+z<0 z>x+y+1
: Column A: z
: Column B:1
: Ans:D
: *有判斷的好方法嗎
最簡單..隨意代數字進去看就知道..
: 8. On the real number line, the coordinate of points A, B, and C are 2, -1
: and x, respectively. What is value of x when line AC^2 + line BC^2 has
: the least value?
: Ans: 1/2
AC = BC的時候最小
: 21. If 5 cards, represented by A, B, C, D, and E, are placed in a row
: so that C is never at either end, how many different arrangements
: are possible?
: Ans:72
: 我算96耶@@ 全部有5!種=120 C在最後面有4!種=24 120-24=96
: 那邊錯了??
C必須不在頭也不在尾..所以是24 x 2 = 48種(C在頭 or 尾)
120 - 48 = 72
: 22. How many possible committees can be formed from a group of seven people
: if each committee can have any numbers from one to seven?
: Ans: 127
2^7 - 1 = 128
簡單說就是..每個人只有兩種可能(加入 跟 沒加入委員會)
所以是2x2x2x2x2x2x2 - 1(全部都不加入)
: Test 9
ex : "nine is the second power of three"
Which of the following is the second power of (1+1^0.5)^0.5
1^0.5不就是1嗎?...所以原題目可以寫成..2^0.5..second power是同樣數字的乘積
所以答案是 2 ???
: 24. A bag contatins red gloves, black gloves and white ones.
: What is the least number of gloves that must be taken out of the bag
: to be sure of having 4 pairs of gloves?
: Ans:10
: *不懂
最少要拿幾次才一定會有四對手套
簡單說就是去討論一下..詳細算法還真難講..算是思考型的題目
假使都不給面子一直湊不到最少幾次才能拿一雙..?
答案是..四次..(紅白黑 任一)
用這樣去思考
紅白黑 (任一,1雙) 跟前面同一顏色 (任一,1雙) 同前一顏色 (任一,1雙) 在同一顏色
(任一,1雙)
答案..10次..我是這樣想的啦..
--
上帝曾經說過 :
當一個人打你右臉的時候
你就要用日耳曼背橋摔壞它的左臉
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 118.169.209.212
※ 編輯: bluecsky 來自: 118.169.209.212 (06/17 16:20)
※ 編輯: bluecsky 來自: 118.169.209.212 (06/17 16:22)
推
06/17 17:58, , 1F
06/17 17:58, 1F
推
06/17 21:40, , 2F
06/17 21:40, 2F
→
06/17 21:46, , 3F
06/17 21:46, 3F
→
06/17 21:46, , 4F
06/17 21:46, 4F
推
06/17 21:54, , 5F
06/17 21:54, 5F
推
06/17 22:01, , 6F
06/17 22:01, 6F
推
06/17 22:26, , 7F
06/17 22:26, 7F
→
06/17 22:28, , 8F
06/17 22:28, 8F
→
06/17 22:28, , 9F
06/17 22:28, 9F
→
06/17 22:28, , 10F
06/17 22:28, 10F
→
06/17 22:29, , 11F
06/17 22:29, 11F
→
06/17 22:29, , 12F
06/17 22:29, 12F
→
06/17 22:30, , 13F
06/17 22:30, 13F
→
06/17 22:30, , 14F
06/17 22:30, 14F
→
06/17 22:31, , 15F
06/17 22:31, 15F
推
06/17 22:31, , 16F
06/17 22:31, 16F
討論串 (同標題文章)