[問題] Homework 3-1,3-2

看板CS_SLT2005作者 (家太遠了)時間20年前 (2005/10/10 21:08), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/2 (看更多)
I am stuck on question 1 and 2 for homework 3 for a long time. Could someone give me a hint on them or point out if I am thinking in the right direction? For Q1, I try to expand the exponent in terms of xi1,xi2,xj1 and xj2 then I try to rearrange them so the expanded terms (other than the square of of the basic elements) fit well in the denomenator (n) of the infinite series e^n = (1+n/1!+n^2/2!+.......). No luck on this direction so far... I couldn't get something like what we have in the lecture. For Q2, suppose x is in n1 space and phi(x) is in n2 space; we need to express n2 in terms of n1 and maybe d (the exponent in poly kernel), right? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.233.45
文章代碼(AID): #13IcVLV4 (CS_SLT2005)
討論串 (同標題文章)
文章代碼(AID): #13IcVLV4 (CS_SLT2005)