[解題] 三角函數求極值
1.年級:高一
2.科目:數學
3.章節:高一下第三章三角函數
4.題目:
f(x)=(sinx*cosx)/(1+sinx+cosx)
前面小括號是分子 後面的小括號是分母
題目要問這個分式的最大值和最小值
5.想法:
我令sinx+cosx=t => sinx*cosx=(t^2-1)/2
f(x)=(t^2-1)/(2+2t)
然後我令y=(t^2-1)/(2+2t)
化簡後得到t^2-2yt-(2y+1)=0
因為t是實數
所以上面的方程式有實跟
=> (2y)^2+4(2y+1)>=0
展開後得4y^2+8y+4>=0
y^2+2y+1>=0
(y+1)^2>=0
所以y屬於R
這樣不就表示原式不存在最大值跟最小值?
可是答案給最大值為[(根號2)-1]/2
最小值為-[(根號2)+1]/2
看了半天看不出來我哪裡算錯或是推倒有誤
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.229.148.188
※ 編輯: ALiu 來自: 61.229.148.188 (10/04 01:30)
推
10/04 01:32, , 1F
10/04 01:32, 1F
→
10/04 01:33, , 2F
10/04 01:33, 2F
→
10/04 01:35, , 3F
10/04 01:35, 3F
→
10/04 01:43, , 4F
10/04 01:43, 4F
→
10/04 01:44, , 5F
10/04 01:44, 5F
推
10/04 01:47, , 6F
10/04 01:47, 6F
→
10/04 01:48, , 7F
10/04 01:48, 7F
→
10/04 01:49, , 8F
10/04 01:49, 8F
→
10/04 01:49, , 9F
10/04 01:49, 9F
推
10/04 01:54, , 10F
10/04 01:54, 10F
→
10/04 01:55, , 11F
10/04 01:55, 11F
→
10/04 01:56, , 12F
10/04 01:56, 12F
→
10/04 01:57, , 13F
10/04 01:57, 13F
→
10/04 01:57, , 14F
10/04 01:57, 14F
→
10/04 01:59, , 15F
10/04 01:59, 15F
→
10/04 01:59, , 16F
10/04 01:59, 16F
→
10/04 02:05, , 17F
10/04 02:05, 17F
→
10/04 02:07, , 18F
10/04 02:07, 18F
推
10/04 05:25, , 19F
10/04 05:25, 19F