討論串[張爸] 積分,證明
共 2 篇文章
首頁
上一頁
1
下一頁
尾頁

推噓5(5推 0噓 9→)留言14則,0人參與, 最新作者Honor1984 (希望願望成真)時間15年前 (2010/05/17 23:27), 編輯資訊
0
0
0
內容預覽:
1 1. ∫f(x)dx = ∫f(1-x)dx = 0. 0 0. 1. ∫[f(x) + f(1-x)]dx = 0. 0. 所以存在c介於[0,1]. 使得[f(c) + f(1-c)](1-0) = 0. => f(c) + f(1-c) = 0. --. 發信站: 批踢踢實業坊(ptt

推噓0(0推 0噓 0→)留言0則,0人參與, 最新作者dreambegins (夢想正開始)時間15年前 (2010/05/17 20:56), 編輯資訊
0
0
0
內容預覽:
1. f:[0,1]→R, 為一連續函數, 且滿足 S f(x)dx = 0 ,. 0. 試證: 存在一個[0,1]上的c,使得f(c) + f(1-c) = 0 .. thanks >"<. --. 發信站: 批踢踢實業坊(ptt.cc). ◆ From: 140.138.31.208.
首頁
上一頁
1
下一頁
尾頁