[向量]一題散度定理
Let F(x,y,z) = (xy^2)i+(yz^2)j+(zx^2)k be a vector filed and
S ={(x,y,z)︱x^2+y^2+z^2 = 25} be a surface with outward orientation.
Find the flux ∫∫F‧n dS of F(x,y,z)
以下是小弟的解法
由散度定理得: 原式 = ∫∫∫divF dV = ∫∫∫ (x^2+y^2+z^2) dV
S
然後直接將 x^2+y^2+z^2 = 25 代入 得解:25*V=25*(4/3)pi*5^3
請問為何這樣解會錯??
解答是將上式轉換成球座標解得
先感謝願意幫忙解惑的大大<(_ _)>
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.33.50.231
※ 編輯: iamOsaka 來自: 114.33.50.231 (06/15 00:05)
推
06/15 00:09, , 1F
06/15 00:09, 1F
→
06/15 00:10, , 2F
06/15 00:10, 2F
→
06/15 00:14, , 3F
06/15 00:14, 3F
推
06/15 00:14, , 4F
06/15 00:14, 4F