[微分] z=f(x,y)=g(r,Θ) 利用隱函數證明

看板trans_math作者 (老江湖)時間18年前 (2007/05/24 00:27), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
z=f(x,y)=g(r,Θ)利用隱函數證明 In parts(a)-(e),suppose that the equation z=f(x,y) is expressed in the polar from z=g(r,Θ) by making the sub-stitution x=rcosΘ and y=rsinΘ. (a)View r and Θ as functions of x and y and use implicit differentiation to show that dr dΘ sinΘ ____ =cosΘ and ___ = - _____ dx dx r (b)View r and Θ as functions of x and y and use implicit gifferentiation to show that dr dΘ cosΘ ____ =sinΘ and ___ = _____ dy dy r (c)Use the results in parts (a) and (b) to show that dz dz 1 dz ____ = ____cosΘ- ___ ____sinΘ dx dr r dΘ dz dz 1 dz ____ = ____sinΘ+ ___ ____cosΘ dy dr r dΘ (d)Use the result in part (c) to show that dz dz dz 1 dz (__)^2 + (__)^2 = (__)^2 + ___ (____)^2 dx dy dr r^2 dΘ (e)Use the result in part(c) to show that if z=f(x,y) satisfies Laplace's equation d^2z d^2z ______ + ______ = 0 dx^2 dy^2 then z=(r,Θ) satisfies the equation d^2z 1 d^2z 1 dz ____ + ___ _____ + ___ ____ = 0 dr^2 r^2 dΘ^2 r dr and conversely.The latter equation is called the polar form of Laplace's equation 如果打的太麻煩可以寄電子檔給我,我的雅虎信箱:x213235x@yahoo.com.tw 願意的話也可以加我及時通:x213235x 5/24日約在台北市交我....車費我出 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.231.8.153
文章代碼(AID): #16L6j_4L (trans_math)