[微積] 向量微積分
Erwin Kreyszig Advanced Engineering Mathematics 的 Ch9.9 521頁
10.
F = (y,z/2,3y/2),C為圓形 x^2 + y^2 + z^2 = 6z, z = x+3
▽ × F = (1,0,-1);N = (-r/√2,0,-r/√2)
∮(y)dx+(z/2)dy+(3y/2)dz = ∫∫(▽ × F).N drdψ
C R
2π 3 2π 3
= ∫∫(1,0,-1).(-r/√2,0,-r/√2)drdψ = ∫∫-√2rdrdψ = -9√2π
0 0 0 0
可是解答卻是-18π
13.
F = (y^3,0,x^3),C為三角形邊界其頂點為(1,0,0),(0,1,0),(0,0,1)
▽ × F = (0,-3x^2,-3y^2);N = (1,1,1)
∮(y^3)dx+(0)dy+(x^3)dz = ∫∫(▽ × F).N dxdy
C R
1 1-y 1 1-y
= ∫∫(0,-3x^2,-3y^2).(1,1,1)dxdy = ∫∫(-3x^2-3y^2)dxdy = -1/2
0 0 0 0
可是解答卻是-√3/10
Ch9 Review 522 頁
38.
F = (Sin[x],z,y),S:y^2 +z^2 = 4,-1/2≦x≦1/2,y≧0,z≧0
為什麼第38題不能用底下的右式而要用以下的左式去計算?
^
∫∫F.n dA = ∫∫∫▽.FdV
S T
用左式算的結果是4,用右式算的結果是2πSin[1/2],其解答是4
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.122.230.107
※ Frobenius:轉錄至看板 Math 07/07 23:25
→
07/08 01:19, , 1F
07/08 01:19, 1F
→
07/08 01:28, , 2F
07/08 01:28, 2F
※ 編輯: Frobenius 來自: 140.122.230.55 (08/12 05:35)
→
06/05 15:43, , 3F
06/05 15:43, 3F