[心得] 畢業雜談(三) 既要馬好又要馬跑
由於有人覺得我不應該分太多篇寫
所以我嘗試把幾個主題合併在一起
這篇合併幾個主題並稍做內容調整,主題包含Cost down/人力精簡/JUMP DOE/AI大數據
標題的俗諺最後一句應該沒有人不知道,既要馬兒好又要馬兒跑,還要馬兒不吃草,此俗
諺可謂cost down之核心精神。
Cost down從影印費到電話費,基本上是能省則省,每毛錢都是很計較的。對我這種環工
出身的人來說是讚同的,畢竟節能減碳救地球從自身做起嘛。
但是在生產上的cost down卻是讓人頗傻眼。賣產品都會說一分錢一分貨,但是生產產品
的時候卻是能多省就多省。
雖然常常聽到每間公司都在cost down,卻很少聽到細節,甚至之前有一篇應用Ai偵測機
台訊息,提早發現機台問題,減少產品不良率,但是在實際上,我所看到的卻不是這麼回
事。
我們都知道,開車每5000(有些是10000)KM就要去保養,有時會提早有時可能稍晚,但是
如果要車正常行駛不會半途"顧路",該PM就得PM。
在公司處於不景氣的時候,FAB內的貨少tool RF time累積的慢,PM周期就拉長,這代表
每個月設備支出是降低的。
隨著景氣回溫,每月出貨量增加代表RF on time也增加,PM周期變短。但是設備的月支出
卻依然被刪減,這就是萬惡的cost down之一。
當機台需要PM卻沒有預算,就只能延後PM或讓parts超時工作,甚至變相的讓parts run
到死才換。曾有家設備商駐廠私下抱怨,某機台的e-chuck life time只有6000 hrs,我
們run到10000/12000還在用,還抱怨他家的機器不穩定。
在parts死掉前,各種當機報廢晶圓時常發生,甚至有些機台parts壞了沒預算換,只能讓
機台鎖單一製程,沒貨就idle在那沒辦法生產,我實在不明白這種cost down真的有省到
錢嗎?
而講到了cost down,另一個議題就是"人力精簡"。內部的說法是汰弱留強,但實際的情
況卻是砍掉薪資較高的老員工,再補一批薪資較低的新人,甚至汰弱之後再來個遇缺不補
,每個人的工作量與日俱增。
我所處的單位甚少聽到有誰被汰弱,因為離職率遠大於預訂的汰換率,然而工作量還是在
遇缺不補下增加了,從每季值班頻率1次增加到2至3次就能知道。
雖然人力精簡是cost down的一部份,但我所處的單位不可能單靠離職就能達到cost down
的目標。哪cost又該從何砍起? 答案是晶圓使用量。半導體越來越難,投入的經費與晶圓
是與日俱增的,而我們卻得在更少的人力,更少的晶圓使用量下,用更短的時間完成一個
project,project behind schedule 成為必然。
真要舉個例,大概是這樣的場景:
有家公司,它用100人花3年15000片晶圓做出X45nm代工,現在卻要用80人做X22nm,但是
晶圓只給你8000片,表訂完成時間則是2年,你覺得成功機率有多少。
(謎之聲:X32nm呢??
沒人力沒資源,直接跳過了啦。)
以上數字只是舉例,非真實比例。
少了人少了晶圓,進度做不快,於是工程師被認為是沒有專業能力的,這之後甚至還衍生
出了每週工作評量,工程師還得列舉工作成果,證明自己這週是對公司有供獻的。
上層老闆認為進度落後,與問題發生後無法立刻解決的主因起於工程師專業度不足,實驗
沒有系統性與邏輯性,於是JUMP DOE的實驗設計方法被導入。
DOE的導入可以說是正確的決定,然而DOE卻不是為了節省晶圓使用的實驗設計方式。全因
子實驗(Full factorial design)在每個參數都是變因的情況下,晶圓使用量是非常可觀
的。在被限制使用晶圓的情況下,只能篩選少數幾個因子打DOE,問題也很難一次DOE就能
找到最佳條件,但是老闆總是認為你這批次打了12片/16片DOE,實驗結果範圍應該是能包
山包海,僅需從趨勢裡找個最佳點,問題就迎刃而解。
細數失敗的DOE,最主要的問題在於使用時機不對。另一個DOE失敗的問題在於第二集提到
的,找錯家做DOE。問題根本不是A家,它只有催化劑,你要它打DOE解決問題,根本緣木
求魚。
舉個真實的例子,某project A家做了非常多的實驗,最後解法卻是在B家補打一次IMP,
但是在那之前,A家就是頭號戰犯,被review到炸掉。
接著就開始進入AI大數據的狂想曲了。由於圍棋AI打敗了世界棋王,一股AI超越人類的思
維急速醞釀。由於project時程壓的太緊,DOE打來打去問題還是沒有解,於是老闆覺得AI
就是救星。
在開啓AI的旅途前,我們不僅看了不少跟AI有關的文獻,甚至還被要求實做,甚至要去學
Python,學如何使用tensorflow。而AI目標就是,運用現在已有的資料training AI。之
後只要有任何需求,對AI輸入我所需要的結果,AI就能給出一套解決方案,工程師(其實
這裡只需要助工就夠了)照著解決方案做,一次就能解決問題。既省錢又省人力還可以秒
解答,project永不delay。
當然,最後我沒有開發出這套AI,別說技術上我做不到,退一百萬步言,就算我真的做的
出來,你覺得我會弄一個AI取代所有工程師,然後自己也沒工作嗎?
雖然後期的AI比較回歸到正常面向,但是我們還是沒能把AI應用進工作上。
雖然還有很多沒講,但是雜談三就先寫到這裡。接下來我打算寫讓我決定離職的主要事件
,這部份牽扯到一些公司的機密,我得做些處理,有部份內容需要用替代的假範例,什麼
時候貼再看情況。
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 110.28.39.47 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/Tech_Job/M.1575868336.A.576.html
推
12/09 13:26,
6年前
, 1F
12/09 13:26, 1F
→
12/09 13:27,
6年前
, 2F
12/09 13:27, 2F
→
12/09 13:28,
6年前
, 3F
12/09 13:28, 3F
推
12/09 13:29,
6年前
, 4F
12/09 13:29, 4F
→
12/09 13:30,
6年前
, 5F
12/09 13:30, 5F
→
12/09 13:31,
6年前
, 6F
12/09 13:31, 6F
推
12/09 13:42,
6年前
, 7F
12/09 13:42, 7F
→
12/09 13:42,
6年前
, 8F
12/09 13:42, 8F
推
12/09 13:52,
6年前
, 9F
12/09 13:52, 9F
推
12/09 13:58,
6年前
, 10F
12/09 13:58, 10F
推
12/09 14:01,
6年前
, 11F
12/09 14:01, 11F
推
12/09 14:48,
6年前
, 12F
12/09 14:48, 12F
推
12/09 14:50,
6年前
, 13F
12/09 14:50, 13F
推
12/09 15:45,
6年前
, 14F
12/09 15:45, 14F
推
12/09 15:59,
6年前
, 15F
12/09 15:59, 15F
推
12/09 16:09,
6年前
, 16F
12/09 16:09, 16F
推
12/09 16:41,
6年前
, 17F
12/09 16:41, 17F
推
12/09 17:52,
6年前
, 18F
12/09 17:52, 18F
推
12/09 18:09,
6年前
, 19F
12/09 18:09, 19F
→
12/09 18:09,
6年前
, 20F
12/09 18:09, 20F
→
12/09 18:09,
6年前
, 21F
12/09 18:09, 21F
推
12/09 18:24,
6年前
, 22F
12/09 18:24, 22F
→
12/09 18:24,
6年前
, 23F
12/09 18:24, 23F
推
12/09 18:50,
6年前
, 24F
12/09 18:50, 24F
推
12/09 18:51,
6年前
, 25F
12/09 18:51, 25F
推
12/09 19:04,
6年前
, 26F
12/09 19:04, 26F
推
12/09 19:23,
6年前
, 27F
12/09 19:23, 27F
推
12/09 19:27,
6年前
, 28F
12/09 19:27, 28F
→
12/09 19:57,
6年前
, 29F
12/09 19:57, 29F
推
12/09 20:49,
6年前
, 30F
12/09 20:49, 30F
→
12/09 20:49,
6年前
, 31F
12/09 20:49, 31F
推
12/09 21:14,
6年前
, 32F
12/09 21:14, 32F
是使用JUMP DOE軟體
JUMP可以選擇不同實驗設計方式,會有使用run數的差異。
這邊提到的是JUMP選全因子實驗,但是全部因子都選則run數爆炸多,最後只能挑3-4個做
。但是老闆會認為你用的是全因子設計,實驗做完就該包山包海。
推
12/09 21:43,
6年前
, 33F
12/09 21:43, 33F
推
12/09 22:08,
6年前
, 34F
12/09 22:08, 34F
推
12/09 23:24,
6年前
, 35F
12/09 23:24, 35F
推
12/09 23:31,
6年前
, 36F
12/09 23:31, 36F
→
12/09 23:59,
6年前
, 37F
12/09 23:59, 37F
推
12/10 02:05,
6年前
, 38F
12/10 02:05, 38F
推
12/10 04:50,
6年前
, 39F
12/10 04:50, 39F
→
12/10 06:19,
6年前
, 40F
12/10 06:19, 40F
推
12/10 06:43,
6年前
, 41F
12/10 06:43, 41F
→
12/10 06:44,
6年前
, 42F
12/10 06:44, 42F
→
12/10 06:45,
6年前
, 43F
12/10 06:45, 43F
→
12/10 06:48,
6年前
, 44F
12/10 06:48, 44F
→
12/10 06:48,
6年前
, 45F
12/10 06:48, 45F
→
12/10 06:49,
6年前
, 46F
12/10 06:49, 46F
後期講的AI就有比較正常一點點。
※ 編輯: negohsu (27.246.140.93 臺灣), 12/10/2019 08:43:41
推
12/10 08:37,
6年前
, 47F
12/10 08:37, 47F
→
12/10 10:09,
6年前
, 48F
12/10 10:09, 48F
推
12/10 10:17,
6年前
, 49F
12/10 10:17, 49F
推
12/10 11:15,
6年前
, 50F
12/10 11:15, 50F
→
12/10 12:25,
6年前
, 51F
12/10 12:25, 51F
→
12/10 12:25,
6年前
, 52F
12/10 12:25, 52F
→
12/10 12:25,
6年前
, 53F
12/10 12:25, 53F
推
12/10 18:18,
6年前
, 54F
12/10 18:18, 54F
推
12/10 21:01,
6年前
, 55F
12/10 21:01, 55F
→
12/10 21:52,
6年前
, 56F
12/10 21:52, 56F
推
12/11 08:32,
6年前
, 57F
12/11 08:32, 57F
推
12/15 11:03,
6年前
, 58F
12/15 11:03, 58F
推
12/16 11:43,
6年前
, 59F
12/16 11:43, 59F
→
12/16 14:36,
6年前
, 60F
12/16 14:36, 60F
→
12/16 14:37,
6年前
, 61F
12/16 14:37, 61F
→
12/16 14:38,
6年前
, 62F
12/16 14:38, 62F
推
12/18 11:08,
6年前
, 63F
12/18 11:08, 63F
推
12/19 00:55,
6年前
, 64F
12/19 00:55, 64F