[問題] 用machine learning方法做時間序列的data
想請問版上的大大,如果我有多維時間序列的data
想用Xit估Yt,不用regression,而是用machine learning
請問在做模型驗證,我可以直接用cross validation嗎?
還是也是必需用in sample for training, out sample for forecast來看模型的效能?
我自己的想法是,如果用machine learning.就是把資料視爲橫段面了,用data去找Xit跟Yit的關係,所以交叉驗證這種抽樣還是可以適用這裡。
再麻煩各位回復,謝謝
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 42.72.58.32
※ 文章網址: https://www.ptt.cc/bbs/Statistics/M.1505123861.A.29D.html
→
09/11 18:54, , 1F
09/11 18:54, 1F
→
09/11 20:05, , 2F
09/11 20:05, 2F
→
09/11 20:05, , 3F
09/11 20:05, 3F
→
09/11 20:05, , 4F
09/11 20:05, 4F
→
09/11 20:06, , 5F
09/11 20:06, 5F
→
09/11 20:06, , 6F
09/11 20:06, 6F
→
09/11 20:07, , 7F
09/11 20:07, 7F
推
09/11 20:49, , 8F
09/11 20:49, 8F
→
09/11 23:58, , 9F
09/11 23:58, 9F
→
09/11 23:58, , 10F
09/11 23:58, 10F
→
09/12 02:27, , 11F
09/12 02:27, 11F