[問題] 請問Breusch-Pagan Test中的SSR

看板Statistics作者 (catherinena)時間14年前 (2011/11/13 22:39), 編輯推噓0(0010)
留言10則, 2人參與, 最新討論串1/1
請問Breusch-Pagan Test中的SSR 我想問一下,如果我是手算的話 我該如何計算SSR 找了很多資料,幾乎提程式; 但,我現有的資料是書本 他有段話,我不懂,所以, 無法計算: 內容如下: means of regressing the squared residuals ei^2 against Xi in the usual manner and obtaining the regression sum of squares, to be denoted by SSR 至底如何計算出來,課本無交代,要麻煩高手指點,感恩^^ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.122.57.48

11/14 07:14, , 1F
猜你means的前面應該還有個by
11/14 07:14, 1F

11/14 07:15, , 2F
拿原始的Yi對Xi做簡單線性迴歸 得到ei 再把每個ei平方
11/14 07:15, 2F

11/14 07:17, , 3F
然後用ei^2對Xi做簡單迴歸 得到新的一組residual ri
11/14 07:17, 3F

11/14 07:18, , 4F
假設ei^2的mean是m 就算(ei^2-m)^2的總合 稱其為A
11/14 07:18, 4F

11/14 07:19, , 5F
再算ri^2的和 稱其為B A-B就是SSR了
11/14 07:19, 5F

11/14 15:56, , 6F
如果是這樣的話,應該A就是SSR吧?
11/14 15:56, 6F

11/14 17:32, , 7F
謝謝你,雖然你的方法,我不會用,但,我已知如何算了
11/14 17:32, 7F

11/15 07:19, , 8F
當你做回歸時 (Yi-Ybar)^2的和是SSTO SSR = SSTO - SSE
11/15 07:19, 8F

11/15 07:19, , 9F
所以應該是A-B
11/15 07:19, 9F

11/15 08:50, , 10F
謝謝你,我終於看懂你的寫的了,非常感恩^^
11/15 08:50, 10F
文章代碼(AID): #1ElzQgdN (Statistics)