Re: [問題] 證變異數=條件期望值的變異數+條件變異 …
※ 引述《dino6427 (Benjamin)》之銘言:
: 統計問題-證變異數=條件期望值的變異數+條件變藝術的期望值
: 求證 V(X)= E[V(X︱Y]+V[E(X︱Y)
: y y
: E[V(X︱Y]=E[E(X^2︱Y)-[E(X︱Y)]^2]=EE(X^2︱Y)-E[E(X︱Y)]^2
: y y x x yx y x
: =E(X^2) - E[E(X︱Y)]^2
: y x
: ========
: ={E(X^2)-[E(X)]^2} -{E[E(X︱Y)]^2 - [EE(X︱Y)]^2}
: y x yx
: ====================
: =V(X)-V(E(X︱Y)
: y
: =====
: 我的問題是
: (1) E[E(X︱Y)]^2怎麼變成[E(X)]^2 +{E[E(X︱Y)]^2 + [EE(X︱Y)]^2}的?
: y x yx
: (2) E[E(X︱Y)]^2 + [EE(X︱Y)]^2} 怎麼變成 V(E(X︱Y)的?
: y x yx y
: 感謝答覆!
括號有括錯...看不懂
1. E[ V(X|Y) ] = E[ E(X^2|Y) - (E (X|Y))^2 ]
其中 V(X|Y) = E(X^2|Y) - (E (X|Y))^2
因為 變異數為 二階原動差 - (一階原動差)^2
= E(X^2) - E(E(X|Y))^2
2. 同理, V[ E(X|Y) ] = E[ E(X|Y)]^2 - {E [E (X|Y)]}^2
= E(E(X|Y))^2 - (E(X))^2
1+2 得 E(X^2) - (E(X))^2 = V(X) 得證
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.223.101.33
推
06/06 23:29, , 1F
06/06 23:29, 1F
→
06/06 23:29, , 2F
06/06 23:29, 2F
→
06/06 23:30, , 3F
06/06 23:30, 3F
→
06/06 23:30, , 4F
06/06 23:30, 4F