[問題] Inverse Probability Integral Transformation...

看板Statistics作者 (Loving Kitty =))時間16年前 (2009/09/23 08:01), 編輯推噓1(103)
留言4則, 4人參與, 最新討論串1/1
1. Show that the inverse probability integral transformation for the exponential(theda) distribution is y = -(theda)ln(1-u) <f(y) = exp[-y/theda] / theda> 2. (continuation) If u is uniform(0, 1), deduce that -ln u is exponential(1) or gamma(1); and that -2ln u is chi square(2) 第一題我有導出來了 不過第二題一直想不出來... 麻煩各位高手了...謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 66.203.195.19 lookinforyou:轉錄至看板 Math 09/23 08:01

09/23 09:45, , 1F
變數變換直接算就好啦..
09/23 09:45, 1F

09/23 12:12, , 2F
用mgf算?
09/23 12:12, 2F

09/23 19:57, , 3F
MGF是...?
09/23 19:57, 3F

09/23 20:06, , 4F
動差母函數...
09/23 20:06, 4F
文章代碼(AID): #1AkMKysB (Statistics)