Re: [問題] 請教一題...
※ 引述《chiamay.bbs@bbs.wretch.cc ()》之銘言:
: Suppose that X and Y are independent exponential random variables
: with parameters λ and μ,respectively.
: (a) Calculate P(min{X,Y} >t|X<Y)
: (b) Calculate P(max{X,Y} >t|X<Y)
: (c) Find E(max{X,Y})
: 請各位幫忙一下,謝謝 >0<
X~ε(λ) with pdf λexp{-λx} mean 1/λ
Y~ε(μ) with pdf μexp{-μy} mean 1/μ
f(X,Y)=f(X)f(Y)
P(min{X,Y} >t,X<Y) P{Y>X>t}
(a)P(min{X,Y} >t|X<Y)=-------------------- =----------
P{X<Y} P{X<Y}
∞ y
P{Y>X>t}=∫∫f(X,Y)dxdy
t t
∞ λ
P{X<Y}=∫ P{X<Y|X=x}f(x) dx =--------
0 λ+μ
同理(b)也可算出來
∞ ∞
(c)E(max{X,Y})=∫ P{max{X,Y}>t} dt=∫ 1-P{max{X,Y}<t} dt
0 0
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 218.175.185.137
推
01/12 17:25, , 1F
01/12 17:25, 1F
推
01/12 18:50, , 2F
01/12 18:50, 2F
→
01/12 18:50, , 3F
01/12 18:50, 3F
推
01/12 19:09, , 4F
01/12 19:09, 4F
※ 編輯: mangogogo 來自: 218.175.185.137 (01/12 20:51)
推
01/12 20:52, , 5F
01/12 20:52, 5F
※ 編輯: mangogogo 來自: 218.175.185.137 (01/12 21:06)