[問題]about constraints

看板Physics作者 (njvulfu)時間13年前 (2013/03/12 17:10), 編輯推噓2(202)
留言4則, 2人參與, 最新討論串1/1
大家好, 小弟在 classical mechanics ( Goldstein ) 裡, 第47中第二段的一個example中有一個不懂的地方, 原文如下: As an example , consider a smooth solid hemisphere of radius a place with its flat side down and fastened to the earth whose gravitational acceleration is g. Place a small mass M at the top of the hemisphere with an infinitesimal displacement off center so the mass slides down without friction. Choose coordinates x,y,z centered on the base of the hemisphere with z vertical and the x-z plane containing the initial motion of the mass. Let θ be the angle from the top of the sphere to the mass. The Lagrangian 1 .2 .2 .2 is L = ─ M ( x + y + z ) - mgz. The initial conditions allow us to ignore the 2 2 2 y coordinate , so the constraint equation is a - ( x + z ) = 0. Expressing the 2 2 2 x problem in term of r = x + z and ─ = cosθ, Lagrange's equation are z .2 2.. Maθ - Mg cosθ + λ = 0 ,and Ma θ+ Mga sinθ = 0. Solve the second equation .2 2g 2g and then the first to obtain θ = -── cosθ + ── and λ= Mg(3cosθ-2) a a 問題來了 .2 1.Maθ - Mg cosθ + λ = 0 這一個equation怎麼來的? .2 2g 2g 2.θ = -── cos θ + ── 這怎麼解出來的? a a -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.122.61.221

03/12 23:52, , 1F
請看一下marion chapter7.5的最後一題例題 你就會懂了
03/12 23:52, 1F

03/12 23:52, , 2F
eq都長的一樣
03/12 23:52, 2F

03/12 23:58, , 3F
阿抱歉 有點稍微不一樣 但應該是相同解法
03/12 23:58, 3F

03/13 11:54, , 4F
thank you ^^ !!!
03/13 11:54, 4F
文章代碼(AID): #1HFl48_a (Physics)